Piperacillin/Tazobactam Breakpoints
Enterobacterales and *P. aeruginosa*

Thomas Lodise, Pharm.D., Ph.D.
Executive Committee, USCAST
Background

- Piperacillin/tazobactam (TZP) is a β-lactam/β-lactamase inhibitor combination that is currently recommended as an empiric treatment for infections due to Enterobacterales and *P. aeruginosa*.\(^1\)-\(^4\)

- Despite its wide use, there has been considerable debate on its role for infections caused by extended spectrum β-lactamase-producing Enterobacterales (ESBL-E) and AmpC-producing Enterobacterales (AmpC-E).\(^5\)-\(^8\)

- Data indicates that 15-20% of *E. coli* and *Klebsiella* spp. in the US are ceftriaxone resistant (CRO-R), a phenotypic marker of ESBL-E, and the majority harbor CTX-M enzymes.\(^9\)-\(^13\)

- Tazobactam (TAZ) inhibits most CTX-M enzymes, but TZP has variable in vitro activity against ESBL-E.\(^14\)-\(^19\)
 - The reduced TZP susceptibility is driven in large part by the co-presence of other β-lactamases (i.e., AmpC or OXA-1) and it is estimated that upwards of 50% of CTX-M bearing Enterobacterales co-harbor other β-lactamases.\(^17\)

- Concerns have also been raised with TZP for Enterobacterales (i.e., *Enterobacter cloacae*, *Citrobacter freundii*, and *Klebsiella aerogenes*) that have a moderate to high likelihood of clinically significant AmpC production given that TAZ does not efficiently inhibit these enzymes.\(^6\), \(^20\)
<table>
<thead>
<tr>
<th>Organization</th>
<th>Organisms</th>
<th>Interpretive Categories and MIC Breakpoints, µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Susceptible</td>
</tr>
<tr>
<td>CLSI(^21,22)</td>
<td>Enterobacterales</td>
<td>≤8/4(^a)</td>
</tr>
<tr>
<td></td>
<td>P. aeruginosa(^c)</td>
<td>≤16/4</td>
</tr>
<tr>
<td>EUCAST(^23)</td>
<td>Enterobacterales(^e)</td>
<td>≤8/4</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas spp.(^f)</td>
<td>≤0.001/4</td>
</tr>
</tbody>
</table>

\(^a\) Based on labeled dosing of 3.375 grams or 4.5 grams every 6 hours administered over 0.5 hours.

\(^b\) Susceptible dose-dependent. Based on a dose of 4.5 grams every 6 hours over 3 hours or 4.5 grams every 8 hours administered over 4 hours.

\(^c\) Breakpoint is based on piperacillin (alone or in combination with tazobactam) are based on a piperacillin dosage of at least 3 grams every 6 hours.

\(^d\) Designation for agents that have the potential to concentrate in the urine.

\(^e\) MIC of 16 mg/L is an area of technical uncertainty (ATU)

\(^f\) Susceptible, increased exposure: A microorganism is categorised as "Susceptible, Increased exposure*" when there is a high likelihood of therapeutic success because exposure to the agent is increased by adjusting the dosing regimen or by its concentration at the site of infection.
Susceptibility Testing Interpretative Criteria Recommended by USCAST

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Interpretive Categories and MIC Breakpoints, µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Susceptible</td>
</tr>
<tr>
<td>AmpC-Enterobacterales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No breakpoint recommended</td>
</tr>
<tr>
<td>3GC-R Enterobacterales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No breakpoint recommended</td>
</tr>
<tr>
<td>3GC-S Enterobacterales<sup>a,b</sup></td>
<td>≤16/4</td>
</tr>
<tr>
<td>P. aeruginosa<sup>b</sup></td>
<td>≤16/4</td>
</tr>
</tbody>
</table>

Abbreviations: 3GC-R, third generation cephalosporin resistant; 3GC-S, third generation cephalosporin susceptible.

^a3GC-S Enterobacterales that do not have a moderate to high likelihood of clinically significant AmpC production due to an inducible chromosomal AmpC gene

^bThis recommendation is based on a TZP dose of 4.5 grams infused over 3 hours every 6 hours
Recommendation 1*

USCAST does not recommend a TZP susceptibility breakpoint for Enterobacterales species (i.e., *Enterobacter cloacae*, *Citrobacter freundii*, and *Klebsiella aerogenes*) that have a moderate to high likelihood of clinically significant AmpC production due to an inducible chromosomal AmpC gene.

Voted 12-0 in favor of no susceptibility breakpoint

*Pending open comment period
Rationale for USCAST Recommendation

- Tazobactam does not efficiently inhibit most AmpC β-lactamases.\(^{20, 24-26}\)

- High potential for selection of derepressed AmpC mutants when administering a labile weak inducer like piperacillin for treatment of infections due to Enterobacterales species that have a moderate to high likelihood of clinically significant AmpC production (i.e., *E. cloacae*, *C. freundii*, and *K. aerogenes*).\(^{7,20, 27-31}\)
 - Although TZP is a weak AmpC inducer, derepressed mutants of these species are usually TZP-resistant.\(^{20,32}\)
Use of TZP Versus Meropenem in Patients with Bloodstream Infections Due to AmpC-Producing Enterobacterales

- Negative signal observed with TZP in pilot multi-centered, randomized, open-label study that compared TZP versus meropenem for definitive treatment of bloodstream infections caused by AmpC β-lactamase-producing Enterobacterales (MERINO-2).

- Primary composite outcome: 30-day mortality, clinical failure, microbiological failure, or microbiological relapse.
Considerations with USCAST Recommendation

- USCAST acknowledges that the results of real-world observational studies have not conclusively demonstrated that there is a significant increase in failure with TZP treatment relative to carbapenems for patients with moderate to high production AmpC-E infections.\(^{34-35}\)

 - Studies were of limited sample size.
 - High risk confounding by indication as more severely ill patients received a carbapenem.
 - Studies also often included species with a low risk of clinically significant AmpC production (e.g., *Serratia marcescens*) and/or those lacking a chromosomal AmpC enzyme altogether (e.g., *Citrobacter koseri*).
Recommendation 2*

USCAST does not recommend a susceptibility breakpoint for TZP against 3GC-R Enterobacterales

Voted 11-1 in favor of no susceptibility breakpoint

*Pending open comment period
TZP Activity Against *E. coli* (8,750), *K. pneumoniae* (5,436), *K. oxytoca* (1,597), and *P. mirabilis* (2,187) from US Medical Centers from 2020-2022
TZP Activity Against *E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis* from US Medical Centers Stratified by Ceftriaxone (CRO) Susceptibility (2020-2022)
TZP Activity Against CRO-R *E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis* from US Medical Centers Stratified by CRO Susceptibility (2020-2022)

Graph 1:
- **Y-axis:** % of isolates
- **X-axis:** Piperacillin-tazobactam MIC (mg/L)
- **Legend:**
 - Black: Ceftriaxone-susceptible (15,395)

Graph 2:
- **Y-axis:** % of isolates
- **X-axis:** Piperacillin-tazobactam MIC (mg/L)
- **Legend:**
 - Blue: Ceftriaxone-nonsusceptible (2,575)
Probability of Achieving 50% Free Time Above the MIC (fT>MIC) for TZP 4.5 g IV Q6 Hours (0.5- or 4-hr infusions) and TZP 18 g/daily as Continuous Infusion
Determination of the Tazobactam (TAZ) Exposure Required for Piperacillin (PIP) Efficacy Against ESBL-Producing Enterobacterales

- TAZ exposures are the critical determinant in defining the PK/PD profile of TZP against ESBL-producing Enterobacterales.
 - PIP is readily hydrolyzed by ESBL
- Data from in vitro PK/PD models of ESBL-producing Enterobacterales infections indicate that TAZ exposures associated with standard doses of TZP, administered as 0.5 or 4-hour infusions, are insufficient for restoring the activity of piperacillin against 3GC-R *E. coli* and *Klebsiella spp.* within the range of MIC values currently considered susceptible.37-41
Data from in-vitro PK/PD models of clinical ESBL-producing Enterobacterales indicate percentage of time during dosing interval that free TAZ concentrations exceed the PIP MIC with TAZ 4 mcg/mL ($f_T > \text{MIC}_{\text{TZP}}$) is the PK/PD driver for TAZ with PIP.\(^{38}\)

- 64% $f_T > \text{MIC}_{\text{TZP}}$ were required to achieve bacterial stasis with PIP 4 g IV Q6H.
- 77% $f_T > \text{MIC}_{\text{TZP}}$ were required to achieve 1-log\(_{10}\) CFU/ml reduction with PIP 4 g IV Q6H.

Tazobactam exposures are insufficient for restoring the activity of piperacillin against ESBL-producing *E. coli* and *Klebsiella* spp. within the range of MIC values currently considered susceptible by CLSI and EUCAST.
Meropenem Versus TZP for Treatment of Patients with CRO-R *E. coli* or *Klebsiella* spp. Bloodstream Infections (MERINO TRIAL)\(^{42}\)

<table>
<thead>
<tr>
<th>Design</th>
<th>International, multicenter, open-label, parallel group, randomized, non-inferiority trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Adults with ≥1 positive blood culture with ceftriaxone-non-susceptible E. coli or Klebsiella spp. susceptible to TZP* (2014-2017)</td>
</tr>
<tr>
<td>Intervention</td>
<td>Definitive Treatment with Meropenem 1g IV q8h (30-minute infusion) or TZP 4.5g IV q6h (30-minute infusion)</td>
</tr>
<tr>
<td>Endpoint</td>
<td>All-cause mortality at 30 days post randomization</td>
</tr>
</tbody>
</table>
| Results | Treatment assignment: MEM (n=191) TZP (n=188)
Phenotypic ESBL confirmed in 86% of isolates
Mean APACHE-II score higher in Meropenem group vs. TZP group
* 21.0 vs. 17.9, respectively
Mortality: Meropenem: 3.7% (7/191) vs. TZP: 12.3% (23/187)
* Difference 8.6%; one-sided 97.5% CI to 14.5 |

Note: Bacterial identification to species level was performed using standard laboratory methods and susceptibility testing was performed at local sites using standard methodologies.
Secondary Analyses in MERINO

- Clinical and Microbiological response at Day 4 was lower in TZP patients vs. meropenem patients.
 - TZP: 68.4% vs meropenem: 74.6% (-6.2 risk difference; 95% CI: -15.5 to 3.1)

- Measures of Failure were higher in TZP patients vs. meropenem patients.
 - Microbiologic relapse: TZP: 4.8% vs meropenem: 2.1% (2.7 risk difference; 95% CI: -1.1 to 7.1)
 - Secondary infections: TZP: 8.0% vs. meropenem: 4.2% (3.8 risk difference; 95% CI: -1.1 to 9.1)
 - TZP: 12 patients with TZP or meropenem-resistant organism and 3 with Clostridium difficile infection.
 - Meropenem: 6 patients with TZP or meropenem-resistant organism and 2 with Clostridium difficile infection

- Differences in 30-day mortality between TZP and meropenem in more difficult to treat populations.
 - Pitt score ≥ 4 (TZP: 27.8% vs. meropenem: 0%)
 - Health care–associated infection (TZP: 16.8% vs. meropenem: 3.7%)
 - Non-urinary tract source of infection (TZP: 18.8% vs. meropenem: 4.8%)
 - Immune compromise (TZP: 19.6% vs.meropenem: 2.5%)
Post-Hoc Analysis of MERINO

- Minimum inhibitory concentrations (MIC) testing and enzyme whole genome sequencing were performed at central laboratory
- N=320 primary blood cultures (278 *E.coli*, 42 *K. pneumoniae*) from 379 pts (84%)

Finding #1: TZP MICs using broth microdilution were higher than observed with MERINO testing (Vitek2, disk diffusion)

When TZP-resistant isolates were excluded, mortality difference decreased to 5% (95% CI -1 to 10)

Finding #2: CTX-M predominated (n=273), OXA also common (n=102)

Higher modal TZP MICs for OXA-containing isolates compared with those with ESBL alone (8 mg/L vs. 2 mg/L, p<0.001)

Results of Testing at Central Laboratory: 6% of TZP isolates were resistant and 20% had a TZP MIC of 16 mg/L
TZP MIC >16 mg/L was identified as the optimal MIC breakpoint associated with 30-Day Mortality
Among the 157 microbiologic assessable patients who received TZP, 18 died (11.5%)

Of 96 patients with CCS <3, 1 died

Of 61 patients with CCS ≥ 3, 17 died (27.9%)

- 32 UTI patients: 18.8% died
- 29 non-UTI patients: 37.9% died
The USCAST recommendation was not unanimous.

Dissenting voter did not rule out the potential role for TZP for treatment of complicated urinary tract infections (cUTIs) due to 3GC-R Enterobacterales as there is some evidence supporting TZP in this setting.44-47

Other members cited the high potential for biases in observational studies, limited RCT data, and TAZ with PIP PK/PD data as reasons for not supporting TZP as an option for 3GC-R Enterobacterales cUTIs.

USCAST unanimously agreed that further research is required to better define the TZP susceptibility breakpoints for 3GC-R Enterobacterales.

Additional need for pre-clinical PK/PD studies that include a more diverse group of 3GC-R Enterobacterales.

If use of TZP is supported by additional pre-clinical evidence, further randomized clinical trials would then be warranted to better quantify the efficacy of TZP for patients with 3GC-R Enterobacterales infections, including those with less invasive infections (i.e., cUTIs).
Recommendation 3*

USCAST recommends the TZP susceptibility breakpoint against 3GC-S Enterobacterales that do not have a moderate to high likelihood of clinically significant AmpC production due to an inducible chromosomal AmpC gene is ≤ 16/4 and resistance is >16/4 mg/L.

This recommendation is based on a TZP dose of 4.5 grams IV infused over 3 hours every 6 hours

Voted 11-1 in favor of both the susceptibility breakpoint and dosing recommendations

*Pending open comment period
TZP Activity Against CRO-S *E. coli*, *K. pneumoniae*, *K. oxytoca*, and *P. mirabilis* from US Medical Centers (2020-2022)

The ECOFF for TZP against each Enterobacteriales spp. is ≤ 8 mg/L
PK/PD Rationale

- Although the ECOFF supports a susceptibility breakpoint of ≤ 8/4 mg/L, USCAST was in favor of a TZP susceptibility breakpoint of ≤ 16/4.

- USCAST Recommendation based on PK/PD modeling studies indicate that the probability of achieving 50% fT>MIC with extended TZP 4.5 g/6h (3h IV infusion) is >90% for pathogens with MIC values ≤ 16 mg/L.\(^{36, 48-53}\)

 - USCAST was opposed to the use of standard TZP regimens for patients with 3GC-S Enterobacterales infections.
Probability of Target Attainment of TZP dosing regimens stratified by CL\textsubscript{CR} and MIC

<table>
<thead>
<tr>
<th>CL\textsubscript{CR} (ml/min)</th>
<th>PTA for TZP 4.5 g/6 h, 0.5 h IV infusion at TZP MIC (µg/ml)</th>
<th>PTA for TZP 3.375 g/8 h, 4 h IV infusion at TZP MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25 0.5 1 2 4 8 16 32</td>
<td>0.25 0.5 1 2 4 8 16 32</td>
</tr>
<tr>
<td>120</td>
<td>0.96 0.94 0.90 0.83 0.73 0.57 0.6 0.13 0.99</td>
<td>0.99 0.99 0.99 0.99 0.99 0.96 0.62 0.11</td>
</tr>
<tr>
<td>100</td>
<td>0.98 0.96 0.93 0.88 0.81 0.67 0.46 0.19 0.99</td>
<td>0.99 0.99 0.99 0.99 0.99 0.97 0.73 0.17</td>
</tr>
<tr>
<td>80</td>
<td>0.99 0.98 0.96 0.93 0.87 0.77 0.58 0.30 0.99</td>
<td>0.99 0.99 0.99 0.99 0.99 0.98 0.82 0.27</td>
</tr>
<tr>
<td>60</td>
<td>0.99 0.99 0.98 0.96 0.92 0.84 0.70 0.43 0.99</td>
<td>0.99 0.99 0.99 0.99 0.99 0.99 0.90 0.43</td>
</tr>
<tr>
<td>40</td>
<td>0.99 0.99 0.99 0.98 0.96 0.92 0.84 0.64 0.99</td>
<td>0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.62</td>
</tr>
<tr>
<td>20</td>
<td>0.99 0.99 0.99 0.99 0.98 0.96 0.91 0.80 0.99</td>
<td>0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.81</td>
</tr>
</tbody>
</table>

TZP 4.5 g/6 h, 3 h IV infusion required for ≥ 90% at MIC of 16 mg/L
Activity of PIP and TZP Against CRO-S (CLSI 2022) *E. coli* (4867 Isolates) and *K. pneumoniae* (2783 Isolates) From North America Medical Centers (2007-2010)
PK/PD of TZP Against 3GC-S Enterobacterales

- The presence of TAZ lowers the PIP MIC$_{50/90}$ by several log$_2$ dilutions, indicating the TAZ is not immaterial for TZP MICs against 3GC-S Enterobacterales.

- To date, no pre-clinical PK/PD infection model studies have defined the TAZ PK/PD target in the presence of PIP and there are scant clinical data that has evaluated outcomes by TZP MIC among patients with CRO-S Enterobacterales.

- Standard and prolonged TZP regimens were found to have rapid and sustained bactericidal activity across 7 days in an in vitro dynamic hollow-fiber infection model study of a 3GC-S, non-ESBL-producing *E. coli* with a TZP MIC of 2 mg/L.40
Considerations with USCAST Recommendations

- USCAST voted 11-1 in favor of these recommendations.
 - Based on the belief that use of TZP will largely be empiric for patients with 3GC-S Enterobacterales infections and good stewardship practices will foster de-escalation in most circumstances to a narrower agent.

- The lone dissenting vote was due to concerns that many institutions will not routinely administer extended infusion TZP and/or will lack the resources for aggressive de-escalation.

- It is important to note that these susceptibility breakpoints are contingent upon a TZP dose of 4.5 g every six hours as a three-hour infusion.
 - If institutions find this infeasible, a reasonable susceptibility breakpoint with TZP 4.5 grams every six hours as a 30-minute infusion would be 8 mg/L, as recommended by the CLSI and EUCAST.\(^{21-23}\)

- USCAST unanimously agreed that pre-clinical PK/PD studies are needed to determine optimal TAZ and TZP dosing schemes necessary to restore PIP’s activity against 3GC-S Enterobacterales.
Recommendation 4*

USCAST recommends that the TZP susceptibility breakpoint against *Pseudomonas aeruginosa* is ≤ 16/4 and resistance is >16/4 mg/L.

This recommendation is based on a TZP dose of 4.5 grams IV infused over 3 hours every 6 hours.

Voted 12-0 in favor of both the susceptibility breakpoint and dosing recommendations.

Pending open comment period
Probability of Target Attainment of TZP dosing regimens stratified by CL\textsubscript{CR} and MIC

<table>
<thead>
<tr>
<th>CL\textsubscript{CR} (ml/min)</th>
<th>PTA for TZP 4.5 g/6 h, 0.5 h IV infusion at TZP MIC (µg/ml)</th>
<th>PTA for TZP 3.375 g/8 h, 4 h IV infusion at TZP MIC (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>0.96 0.94 0.90 0.83 0.73 0.57 0.6 0.13 0.99 0.99 0.99 0.99 0.99 0.96 0.62 0.11</td>
<td>0.98 0.96 0.93 0.88 0.81 0.67 0.46 0.19 0.99 0.99 0.99 0.99 0.99 0.97 0.73 0.17</td>
</tr>
<tr>
<td>100</td>
<td>0.98 0.96 0.93 0.88 0.81 0.67 0.46 0.19 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.17</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.99 0.98 0.96 0.93 0.87 0.77 0.58 0.30 0.99 0.99 0.99 0.99 0.99 0.98 0.82 0.27</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.99 0.99 0.98 0.96 0.92 0.84 0.70 0.43 0.99 0.99 0.99 0.99 0.99 0.99 0.90 0.43</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.99 0.99 0.99 0.98 0.96 0.92 0.84 0.64 0.99 0.99 0.99 0.99 0.99 0.99 0.95 0.62</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.99 0.99 0.99 0.99 0.98 0.92 0.84 0.91 0.80 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.81</td>
<td></td>
</tr>
</tbody>
</table>

TZP 4.5 g/6h, 3h IV infusion required for ≥ 90% at MIC of 16 mg/L
Considerations with USCAST Recommendations

- USCAST voted 12-0 in favor of these recommendations.
- It is important to note that these susceptibility breakpoints are contingent upon a TZP dose of 4.5 g IV every six hours as a three-hour infusion.
- Pre-clinical PK/PD studies are needed to determine optimal TZP target against contemporary *P. aeruginosa* isolates with varying resistant determinants in the context of modern-day in vitro surveillance data.
- Future breakpoint decisions should ultimately be guided by high quality clinical data, if it becomes available.
Susceptibility Testing Interpretative Criteria Recommended by USCAST

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Interpretive Categories and MIC Breakpoints, µg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Susceptible</td>
</tr>
<tr>
<td>AmpC-Enterobacterales</td>
<td>No breakpoint recommended</td>
</tr>
<tr>
<td>3GC-R Enterobacterales</td>
<td>No breakpoint recommended</td>
</tr>
<tr>
<td>3GC-S Enterobacterales(^a,b)</td>
<td>≤16/4</td>
</tr>
<tr>
<td>P. aeruginosa(^b)</td>
<td>≤16/4</td>
</tr>
</tbody>
</table>

Abbreviations: 3GC-R, third generation cephalosporin resistant; 3GC-S, third generation cephalosporin susceptible.

\(^a\) 3GC-S Enterobacterales that do not have a moderate to high likelihood of clinically significant AmpC production due to an inducible chromosomal AmpC gene.

\(^b\) This recommendation is based on a TZP dose of 4.5 grams infused over 3 hours every 6 hours.
References

1. ZOSYN® (piperacillin and tazobactam) for injection, for intravenous use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/050684s88s89s90_050750s37s38s39lbl.pdf.

23. https://www.eucast.org/eucast_news/news_singleview/?tx_ttnews%5Btt_news%5D=464&cHash=ea8540c0fdada71b3bbcb3bf765239de ECoASTE.
References

